Calculation Policy

 \square

Calculation Policy－Forest Hill Partnership

What is this Policy for？
 teachers at the school ensure that calculation is taught consistently in all year groups and to aid them in helping children who may need support or further challenge．

The policy is also designed to help parents，carers and other family members support children＇s learning in line with the teaching at school．

How to use this policy?

 based on many years of research and educational success. When learning something new, we always move through the three steps:

- Step one: $\mathrm{C}=$ concrete - children start to learn by using real objects or manipulatives to perform the 'real' story.
- Step two: $\mathrm{P}=$ pictorial - children draw the objects as they are at first and then move to a representation. This supports children in embedding the 'real' story of what they are doing.
- Step three: $\mathrm{A}=$ abstract - this is the written sum or number sentence or algorithm we call this the 'maths' story.

 period.

Our policy is set out to map each stage of calculation across the three steps of learning. It contains additional information as well as photographs. Key language is highlighted in red in the first column.

Equipment/resources:

Vocabulary

 school.

Addition: addend, sum/total. Part and Whole
Subtraction: subtrahend, minuend,
differenceMultiplication:
Division: dividend, divisor, quotient
Fractions: whole and part. Denominator (written first) and numerator

Unifix cubes Numicon counters beads

Number/counting

BaseTen/Dienes

- 3

O

Number line Place value

Addition:

Subtraction:

Addition

Objective

Stage 1：Combining two parts to make a whole．
more altogether add
plus
equals
total
make

Stage 2： Start at the bigger number and count on．
bigger
smaller
count－on
and
tens
ones

Start at the larger number and then count on the smaller number 1－by－1 to find the answer．
閶ヵ+届=围国

Children should begin by drawing the real life object then move to an abstract model to represent each item e．g．a cube or counter

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0		
0	0	0	0	0	0
0	0	0			
0	0	0			

 ロ11ロ

Use the part－whole diagram first then move to the abstract number sentence．

```
12+5=17
```

Children should hold the larger number in their head and count on the smaller number to find the answer．

Addition

Addition

Addition - Bar Modelling

Part-Part-Whole Model

134 girls and 119 boys took part in an art competition.
How many children took part in the competition?

We know the 2 parts. To find the whole, we add $134+119$

Time problems
Time can be a tricky thing for children to visualise as their go-to pictorial model is a clock which goes round and round. As far as we know time doesn't go round, it moves forward in a line so bar models can represent some time problems quite well. Here's an example:

Comparison Model

119 boys took part in an art competition. 15 more girls than boys took part. How many girls took part in the competition?

We are comparing the boys to the girls. We know the smaller quantity. To find the bigger quantity we add $119+15$

134 girls took part in the competition.

Subtraction

Subtraction

Subtraction

Subtraction - Bar Modelling

Part-Part-Whole Model

253 children took part in an art
competition. There are
134 girls. How many boys are there?
We know the whole and 1 part.
To find the missing part, we subtract 253-134.

Comparison Model

134 girls took part in an art competition. 15 fewer boys than girls took part. How many boys took part in the competition?

We are comparing the girls to the boys. We know the bigger quantity. To find the smaller quantity we subtract $134-15$.

119 boys took part in the competition.

Sandi has 12 football cards and Umar has 3. How many more cards does Sandi have than Umar

Mulitplication - Bar Modelling

Part-Part-Whole Model

Devi saved $£ 8$ a week for 5 weeks.
How much did she save altogether?
We know 1 part and the number of parts. To find the whole we multiply 8×5.

Comparison Model

There are 9 white flowers. There are 3 times as many red flowers as white flowers How many red flowers are there?

Two quantities are compared. One is a multiple of the other. We know the smaller quantity.
To find the bigger quantity we multiply 9×3.

There are 27 red flowers.

Divide quantities into equal groups then count the number of groups to find
the answer

Division

Division

4
Kings' Forest
primaru school
rimary School

objectie	Concrete	Pictorial	Abstract
4			
and			$\begin{array}{r} 21 \\ 2 1 6 \longdiv { 4 5 3 6 } \\ 432 \\ 216 \\ 216 \\ \hline \end{array}$

Once pupils are
secure they can move to the abstract only long division.

Division - Bar Modelling

Part-Part-Whole Model

Devi saved $£ 40$ in 5 weeks. How much did she save each week?

We know the whole and the number of parts. To find one part we divide $40 \div 5$.

Devi saves $£ 8$ each week, How many weeks will it take her to save $£ 40$?

We know the whole and one part. To find the number of parts we divide $40 \div 8$.

Devi saved 18 each week.

Division - Bar Modelling

Comparison Model

There are 27 red flowers. There are 3 times as many red flowers as white flowers. How many white flowers are there?

Two quantities are compared. One is a multiple of the other. We know the bigger quantity. To find the smaller quantity we divide $27 \div 3$

There are 27 red flowers and 9 white flowers. How many times as many red flowers as white flowers are there?

Two quantities are compared. One is a multiple of the other. We know both quantities. To find the multiplier we divide 27 $\div 9$.

There are 9 white flowers.

There are 3 times as many red flowers as there are white flowers.

Fractions - Bar Modelling

Fractions problems

Fractions are mentioned 104 times in the National Curriculum so they're quite a big deal.
Modelling fractions using bar models is one of the most intuitive ways of showing fractions pictorially. It might even be that children will gain a greater understanding of bar modelling in general, giving them skills which are transferable to other areas of the Maths curriculum.

As such, there are a wide range of contexts that a bar model can be used to represent
fractions problems.
In Year 2 children have to recognise, find, name and write fractions, such as $\frac{3}{4}$ which can be represented as below:

A bar model representing the equation: What is $\frac{3}{5}$ of 30 ?

Ratio and algebra - Bar Modelling

Ratio problems

90 sweets are shared between bowls a, b and c. Bowl b contains twice the amount that bowl a contains. Bowl c contains three times the amount that bowl a contains. How many more sweets does bowl b have than bowl a?

The comparison bar model is a gift when it comes to ratio problems, which is particularly significant given that in the 2017 KS2 tests the ratio question was one of the most poorly answered.

Both these versions of the problem can be represented using the bar model below:

How to teach equations with the bar model:
$2 b+15=27$ What is the value of b ?

From this we can see that $27-15=2 \mathrm{~b}$
So, we can see $b=6$
$2 \mathrm{a}+7=\mathrm{a}+11$
So, what do we know?

$\longleftarrow 4 \longrightarrow$		
a	a	7
a		11

